
C
o
n
s
is

te
nt *

 Complete *
 W

e
ll D

o
c
u
m

e
n

ted * Easy to
 R

e
u
s
e
 *

 *
 E

valuate

d

*

R
T
S

S
 *

 Artifa
c
t

DAG Scheduling and Analysis on Multiprocessor Systems:
Exploitation of Parallelism and Dependency

Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, Wanli Chang
Department of Computer Science, University of York, UK

{shuai.zhao, xiaotian.dai, iain.bate, alan.burns, wanli.chang}@york.ac.uk

Abstract—With ever more complex functionalities being im-
plemented in emerging real-time applications, multiprocessor
systems are demanded for high performance, and directed acyclic
graphs (DAGs) are used to model functional dependencies. In
this work, we study a single periodic non-preemptive DAG
running on a homogeneous multiprocessor platform, which is
a common setup in many domains, such as automotive, robotics,
and industrial automation. Aiming to reduce the makespan of
the DAG and provide a tight yet safe bound, our contributions
involve the exploitation of node-level parallelism and inter-node
dependency, which are the two key factors of a DAG topology.
First, we introduce a concurrent provider and consumer (CPC)
model that precisely captures the above two factors, and can be
recursively applied when parsing a DAG. Building upon CPC,
we propose a novel scheduling method focused on reducing the
makespan that orders the nodes in the following sequence: (i)
the critical path, (ii) early predecessor paths of the critical path,
and (iii) longer paths. Secondly, new response time analysis is
presented, which provides a generic bound for any execution
order of the non-critical nodes and a specific (tighter) bound for
a fixed such order. Comprehensive evaluation demonstrates that
our scheduling approach and analysis outperforms the state-of-
the-art methods.

I. INTRODUCTION

Driven by the demands of high performance and complex
functionalities, multiprocessor systems are increasingly being
employed in real-time applications. Directed Acyclic Graphs
(DAGs) tasks are used to model functional dependencies [1].

Many existing works use a single recurrent event- or time-
triggered DAG task to model the system [2], [3], [4], [5], [6],
[7], [8]. For example, a complete automotive task chain from
perception to control is described in [2] and converted to a
single periodic DAG task.

In addition, to avoid migration and cache-related preemption
overhead, a non-preemptive global scheduling scheme is often
deployed [2], [9]. That is, the nodes of a DAG are scheduled
globally on all cores and preemption is not allowed during the
execution of a node [10].

Main contributions: In this work, we study a commonly
seen setup, where a single periodic non-preemptive DAG
runs on a homogeneous multiprocessor platform. By fully
exploiting the node-level parallelism and inter-node depen-
dency, which are the essence of the DAG topology, we reduce
the makespan (i.e., the time interval between the starting and
finishing of the DAG execution) and provide a tight yet safe
bound on the makespan.

This paper has passed an Artifact Evaluation process.

The first principal contribution is to introduce a concurrent
provider and consumer (CPC) model to precisely capture the
two factors: parallelism and dependency. The CPC model
describes the critical path (the longest execution sequence)
in a DAG as a set of consecutive providers, each of which
has a group of non-critical nodes (i.e., consumers) that can
1) execute concurrently with the provider and 2) delay the
starting of the next provider. The intuition comes from that the
non-critical nodes consume the computation resource (on other
cores in parallel) provided when running a critical node. This
model can be recursively applied to build nested CPC when
parsing a DAG and serves as the foundation of the scheduling
and analysis.

For the second contribution, a novel scheduling method
for CPC is proposed that orders the nodes in the follow-
ing sequence: (i) the critical path (i.e., providers), (ii) early
predecessors paths of the critical path (i.e., consumers paths
that would otherwise block the following providers), and (iii)
longer paths (in a consumer group of a provider). Further-
more, we present new response time analysis that provides
two provably safe bounds. One is a generic bound featuring
critical-path-first execution with any execution order of the
non-critical nodes, accounting for the workload that causes
a delay. The other is a specific and tighter bound when the
scheduler enforces a fixed order of the non-critical nodes.
Comprehensive evaluation shows that our work outperforms
the state-of-the-art methods.

Organisation: The rest of the paper is organised as follows:
Section II presents the system and task model. Section III
describes the state-of-the-art approaches in DAG scheduling
and analysis with a motivational example. The proposed
scheduling method is explained in Section IV, with the CPC
model given in Section IV-A. Section V provides the new
response time analysis. Section VI briefly discusses the exten-
sion to multiple DAGs. Finally, the evaluation is reported in
Section VII before Section VIII makes the concluding remarks.

II. TASK MODEL AND SCHEDULING PRELIMINARIES

A. Task model

A DAG task τx is defined by {Tx, Dx,Gx = (Vx, Ex)},
with Tx denoting its minimum inter-arrival time, Dx gives a
constrained relative deadline, i.e., Dx ≤ Tx, and Gx is a graph
defining the set of activities forming the task. The graph is
defined as Gx = (Vx, Ex) where Vx denotes the set of nodes
and Ex ⊆ (Vx×Vx) gives the set of directed edges connecting

v1
1

v4 v8

v5 v7

v3

v2

v6

1

7

3

3

6 2

1

v1
t17

v2 v5 v7 v8
v6v4v3

0

v1
t16

v2
v5 v7

v8v6 v4v3
0

v1
t14

v2
v5 v7 v8v6

v4
v3

0

v1
t13

v2
v5 v7 v8

v6 v4
v3

0

(a) Example DAG (b) Execution scenarios

Figure 1: Makespan of a DAG task with example execution
scenarios and the critical path highlighted.

any two nodes. Each node vx,j ∈ Vx represents a computation
unit that must be executed sequentially and is characterised by
its Worst-Case Execution Time (WCET), Cx,j . For simplicity,
the subscript of the DAG task (i.e., x for τx) is omitted when
the system has only one DAG task.

For any two nodes vj and vk connected by a directed
edge ((vj , vk) ∈ E), vk can start execution only if vj has
finished its execution. That is, vj is a predecessor of vk,
whereas vk is a successor of vj . A node vj has at least
one predecessor pre(vj) and at least one successor suc(vj),
formally defined as pre(vj) = {vk ∈ V | (vk, vj) ∈ E}
and suc(vj) = {vk ∈ V | (vj , vk) ∈ E}, respectively.
Nodes that are either directly or transitively predecessors
and successors of a node vj are termed as its ancestors
anc(vj) and descendants des(vj) respectively. A node vj with
pred(vj) = ∅ or succ(vj) = ∅ is referred to as the source
vsrc or sink vsink respectively. Without loss of generality,
we assume each DAG has one source and one sink node.
Nodes that can execute concurrently with vj are given by
C(vj) = {vk|vk /∈ (anc(vj) ∪ des(vj)),∀vk ∈ V } [11].

A DAG task has the following fundamental features. First,
a path λa = {vs, · · · , ve} is a node sequence in V and follows
(vk, vk+1) ∈ E,∀vk ∈ λa\ve. The set of paths in V is defined
as ΛV . A local path is a sub-path within the task and as such
does not feature both the source vsrc and the sink vsink. A
complete path features both. Function len(λa) =

∑
∀vk∈λa Ck

gives the length of λa. Second, the longest complete path is
referred to as the critical path λ∗, and its length is denoted
by L, where L = max{len(λa),∀λa ∈ ΛV }. Nodes in λ∗

are referred to as the critical nodes. Other nodes are referred
to as non-critical nodes, denoted as V ¬ = V \λ∗. Finally,
the workload W is the sum of a task’s WCETs, i.e. W =∑
∀vk∈V Ck. The workload of all non-critical nodes is referred

to as the non-critical workload.
Figure 1(a) shows an example DAG task with eight nodes

(i.e., V = {v1, v2, ..., v8}). The number at the top right of
each node gives its WCET, e.g., C2 = 7. Based on the
above terminologies, for node v7 we have pre(v7) = {v5, v6},
anc(v7) = {v1, v5, v6}, suc(v7) = des(v7) = {v8} and
C(vj) = {v2, v3, v4}. For the DAG, we have L = 10, W = 24,
with λ∗ = {v1, v5, v7, v8}, vsrc = v1 and vsink = v8.

B. Work-conserving schedule and analysis

The majority of the existing work on scheduling DAG
tasks assumes a work-conserving scheduler [12]. A scheduling
algorithm is said to be work-conserving if it never idles a
processor when there exists pending workload. A generic
bound that captures the worst-case response time of tasks
scheduled globally with any work-conserving method is pro-
vided in [13]. This analysis is later formalised in [12], [14]
for DAG tasks, as given in Equation 1. Notation Rx denotes
the response time of τx, m denotes the number of processors,
Ix,y gives the interference from a high priority DAG task τy ,
and hp(x) gives all high priority tasks of τx.

Rx = Lx +

⌈
1

m
(Wx − Lx)

⌉
+

∑
τy∈hp(x)

Ix,y (1)

In this analysis, the worst-case response time of a DAG
task τx is upper bounded by the finish time of the critical path,
with interference imposed by all non-critical nodes of τx itself
and high priority DAG tasks, i.e., Ix,y,∀τy ∈ hp(x). Details
for bounding Ix,y can be found in [12] and [14]. However,
this analysis assumes a node vj can be delayed by all the
concurrent nodes [12], which is pessimistic for scheduling
methods with an explicit execution order known a priori [11].

Figure 1(b) provides possible execution scenarios of the
example DAG in a dual-core system. With nodes scheduled
randomly, a total 240 different execution scenarios are pos-
sible, with a makespan ranging from 13 to 17. The analysis
described above provides a safe bound with R = L+ 1

m (W −
L) = 10 + 1

2 (24 − 10) = 17. However, there are scheduling
orders with a makespan much lower than 17. Based on the
work-conserving schedule and the classic analysis, we propose
new methods to reduce the run-time makespan and to tighten
the analytical bounds of a single recurrent DAG task.

III. RELATED WORK

For homogeneous multiprocessors with a global scheme,
existing scheduling (and their analysing) methods aim at
reducing the makespan and tightening the worst-case analytical
bound. They can be classified as either slice-based [15], [16] or
node-based [11], [17]. The slice-based schedule enforces node-
level preemption and divides each node into a number of small
computation units (e.g., units with a WCET of one in [15]).
By doing so, the slice-based methods can improve node-level
parallelism but to achieve an improvement the number of
preemptions and migrations need to be controlled.

The node-based methods provide a more generic solution by
producing an explicit node execution order, based on heuristics
derived from either the spatial (e.g., number of successors of a
node [18] and topological order of nodes [11]) or the temporal
(execution time of nodes [17], [2], [19]) characteristics of
the DAG. Below we describe two most recent node-based
methods.

In [17], an anomaly-free non-preemptive scheduling method
is proposed for a single periodic DAG, which always executes
the ready node with the longest WCET to improve parallelism.

𝜃!∗ 𝜃#∗ 𝜃$∗ 𝜃%∗

𝐹(𝜃!∗)
𝐹(𝜃#∗) 𝐹(𝜃$∗)

(b)

𝜃!∗ 𝜃#∗ 𝜃$∗ 𝜃%∗

𝐺(𝜃!∗)

𝐺(𝜃#∗)

(c)

… … …

sub-path 1 sub-path 2 sub-path 3 sub-path 4

(a)

Figure 2: The CPC model of a DAG. The critical path is highlighted in orange and the non-critical nodes are in blue, with
different colour gradation to indicate the earliness they can delay the critical path.

[17] prevents anomalies occurring when nodes are executing
less than their WCETs, which can lead to an execution order
different from the schedule. This is achieved by guaranteeing
nodes are executed in the same order as the offline simulation.
However, without considering inter-node dependencies, this
schedule cannot minimise the delay on the completion of
DAG. For the example in Figure 1, this method leads to the
scenario with a makespan of 14, in which the non-critical node
v6 delays the DAG completion due to a late start.

In [11], a new response time analysis is presented, which
dominates the traditional bound [13], [12] when an explicit
node execution order is known a priori. That is, a node
vj can only incur delay from the concurrent nodes that are
scheduled prior to vj . Then, a scheduling method is proposed
that always executes: i) the critical path first; and ii) the
immediate interference nodes first (nodes that can cause the
most immediate delay on the currently-examined path).

The novelty in [11] is considering both topology and path
length in a DAG, and provides the state-of-the-art analysis
against which our approach is compared. However, He et al.
in [11] schedule concurrent nodes based on the length of
their longest complete path (a path from the source to the
sink node), i,e, nodes in the longest complete path first. As
illustrated in Section IV, this heuristic is not dependency-
aware, which can reduce parallelism, and hence, lengthen the
final critical path.

IV. DAG SCHEDULING: A PARALLELISM AND NODE
DEPENDENCY EXPLOITED METHOD

Equation 1 indicates that minimising the delay from non-
critical nodes to the critical path (i.e., 1

m (W −L)) effectively
reduces makespan of the DAG. Achieving this requires the
complete knowledge of the topology (i.e., the dependency and
parallelism of each node) of a DAG so that the potential
delay of the critical path can be identified. To support this
the CPC model is proposed to fully exploit node dependency
and parallelism (Section IV-A).

Based on the CPC model, a scheduling method is then
presented to maximise node parallelism. This is achieved
by a rule-based priority assignment, in which three rules
are developed to statically assign a priority to each node
in the DAG. Firstly to always execute the critical path first
(Section IV-B), and then two rules (Section IV-C) to maximise
parallelism and to minimise the delay to the critical path.

The entire proposed approach has general applicability to
DAGs with any topology (unlike, e.g., [14], which assumes
nested fork-join DAGs only). It assumes a homogeneous
architecture, however, it is not restricted by the number of
processors. Table I summarises notations introduced by the
proposed CPC model and scheduling method.

A. Concurrent provider and consumer model

The CPC model has two key stages. First, the critical path
is divided into a set of consecutive sub-paths based on the
potential delay it can incur (Figure 2(a)). Second, for each
sub-path, the CPC model identifies the non-critical nodes that
can 1) execute in parallel with the sub-path and 2) delay the
start of the next sub-path, based on precedence constraints
(Figure 2(b) and (c)).

The intuition of the CPC model is: when the critical path
is executing, it utilises just one core so that the non-critical
ones can execute in parallel on the remaining (m− 1) cores.
The time allowed for executing non-critical nodes in parallel
is termed as the capacity, which is the length of the critical
path. Note that non-critical nodes that utilise this capacity to
execute cannot cause any delay to the critical path. The sub-
paths in the critical path are termed capacity providers Θ∗

and all non-critical nodes are capacity consumers Θ. For each
provider θ∗i ∈ Θ∗, it has a set of consumers F (θ∗i) that can
execute using θ∗i ’s capacity as well as delay the next provider
θ∗i+1 in the critical path.

Algorithm 1 presents a two-step process for constructing
the CPC model of an input DAG G with its critical path λ∗.
Starting from the head node in λ∗, capacity providers are
formed by analysing node dependency between the critical
path and non-critical nodes (Line 3-9). For a provider θ∗i , its
nodes should execute consecutively without delay from non-
critical nodes in terms of dependency. That is, each node in θ∗i ,
other than the head node (Line 5), only has one predecessor
which is the previous node in θ∗i , see Figure 2(b) with four
capacity providers identified.

Then, for each θ∗i ∈ Θ∗, its consumers F (θ∗i) are identified
as the nodes that 1) can execute concurrently with θ∗i , and 2)
can delay the start of θ∗i+1 (i.e., anc(θ∗i+1) ∩ V ¬ in Line 12).
Accordingly, nodes in F (θ∗i) that finish later than θ∗i will delay
the start of θ∗i+1 (if it exists). In Figure 2(b), nodes in F (θ∗1)
can delay θ∗2 if they are finished later than θ∗1 . By doing so,

Algorithm 1: CPC(G, λ∗): CPC model construction
Inputs : {G = (V,E)}
Outputs : Θ∗, F (θ∗i), G(θ∗i),∀θ∗j ∈ Θ∗

Parameters: λ∗, V ¬ = V \λ∗
1 Θ∗ = ∅;
2 /* Step 1: identifying capacity providers */

3 for each vj ∈ λ∗, in topological order do
4 θ∗i = {vj}; λ∗ = λ∗\vj ;
5 while pre(vj+1) = {vj} do
6 θ∗i = θ∗i ∪ {vj+1}; λ∗ = λ∗ \ vj ;
7 end
8 Θ∗ = Θ∗ ∪ θ∗i ;
9 end

10 /* Step 2: identifying capacity consumers */

11 for each θ∗i ∈ Θ∗, in topological order do
12 F (θ∗i) = anc(θ∗i+1) ∩ V ¬;
13 G(θ∗i) =

⋃
vj∈F (θ∗i){C(vj) ∩ V ¬};

14 V ¬ = V ¬ \ F (θ∗i);
15 end
16 return Θ∗, F (θ∗i), G(θ∗i), ∀θ∗i ∈ Θ∗

the CPC model provides detailed knowledge of the potential
delay caused by non-critical nodes on the critical path.

Furthermore, given an arbitrary DAG structure, a consumer
vj ∈ F (θ∗i) can start earlier than, synchronous with, or
later than the start of θ∗i . For synchronous and late-released
consumers, they will only utilise the capacity of θ∗i . However,
an early-released consumer can execute concurrently with
certain previous providers, and therefore interfere with their
consumers and impose an indirect delay to those providers.
For a provider θ∗i , G(θ∗i) (in line 13) denotes the nodes that
belong to the consumer groups of later providers, but which
can execute in parallel (in terms of topology) with θ∗i . In
Figure 2(c), nodes in G(θ∗1) and G(θ∗2) belong to F (θ∗2) and
F (θ∗3), but can execute in parallel with θ∗1 and θ∗2 respectively
based on the precedence constraints.

With the CPC model, a DAG is transformed into a set of
capacity providers and consumers, with a time complexity of
O(|V |+|E|). The CPC model provides complete knowledge of
both direct and indirect delays from non-critical nodes on the
critical path. For each provider θ∗i , nodes in F (θ∗i) can utilise
a capacity of len(θ∗i) on each of m − 1 cores to execute in
parallel while incurring potential delay from G(θ∗i).

Recall the DAG in Figure 1(a), its critical path forms three
providers θ∗1 = {v1, v5}, θ∗2 = {v7} and θ∗3 = {v8}, and delay
from non-critical nodes only occurs on the head node of the
providers. For each provider, we have F (θ∗1) = {v6}, F (θ∗2) =
{v2, v3, v4} and F (θ∗3) = ∅. In addition, all nodes in F (θ∗2) =
{v2, v3, v4} can start earlier than θ∗2 delaying the execution of
F (θ∗1) and subsequently, the start of θ∗2 . Therefore, G(θ∗1) =
{v2, v3, v4} and G(θ∗2) = G(θ∗3) = ∅.

We now formally define the parallel and interfering work-
load of a capacity provider. Let f(·) denote the finish time
of a provider θ∗i or a consumer node vj , Li = len(θ∗i)

Table I: Notations introduced in the proposed CPC model and
scheduling method.

Notation Description
Θ∗/Θ The set of capacity providers/consumers.
θ∗i A capacity provider with an index i.
pj The priority of a node vj .
Li The length of provider θ∗i .
Wi The total workload of all nodes in θ∗i , F (θ∗i) and G(θ∗i).
αi The workload in F (θ∗i) and G(θ∗i) that can execute in

parallel with θ∗i .
F (θ∗i) The consumer group of θ∗i .
G(θ∗i) Nodes in the consumer groups of later providers that can

execute in parallel with θ∗i .
f(·) The finish time of a given provider or a consumer node.
lj(·) The length of the longest path that includes vj in the set

of input nodes.

gives the length of θ∗i and Wi = Li +
∑
vk∈F (θ∗i){Ck} +∑

vk∈G(θ∗i){Ck} gives the total workload of θ∗i , F (θ∗i) and
G(θ∗i). We formally define the terms parallel and interfering
workload of a provider θ∗i . Note, W ≤

∑
θ∗i ∈ΘWi as a

consumer can be accounted for more than once if it can
execute concurrently with multiple providers.

Definition 1 (Parallel Workload of θ∗i). The parallel workload
αi of θ∗i is the workload in Wi − Li that can execute before
the time instant f(θ∗i).

For a node vj in F (θ∗i)∪G(θ∗i), it contributes to αi if either
f(vj) ≤ f(θ∗i) or f(vj)− Cj < f(θ∗i). The former case (i.e.,
f(vj) ≤ f(θ∗i)) indicates vj is finished before the finish of
θ∗i and cannot cause any delay, whereas f(vj)− Cj < f(θ∗i)
means vj can partially execute in parallel with θ∗i so that its
delay on θ∗i+1 is less than Cj . In Section V, function f(·) is
formulated for both providers and consumers, along with the
response time analysis.

Definition 2 (Interfering Workload of θ∗i). The interfering
workload of θ∗i is the workload in Wi − Li that executes
after the time instant f(θ∗i). For a provider θ∗i , its interfering
workload is Wi − Li − αi.

With Definitions 1 and 2, Lemma 1 follows.

Lemma 1. For providers θ∗i and θ∗i+1, the workload in Wi

that can delay the start of θ∗i+1 is at most Wi − Li − αi.

Proof. Based on the CPC model, the start of θ∗i+1 de-
pends on the finish of both θ∗i and F (θ∗i), which is
max{f(θ∗i),maxvj∈F (θ∗i) f(vj)}. By Definition 1, αi will not
cause any delay as it always finishes before f(θ∗i), and hence,
the lemma follows. Note that although G(θ∗i) cannot delay
θ∗i+1 directly, it can delay on nodes in F (θ∗i), and in turn,
causes an indirect delay to θ∗i+1.

B. The “Critical Path First” execution (CPFE)

In the CPC model, the critical path is conceptually modelled
as a set of capacity providers. Arguably, each complete path
can be seen as the providers, which offers the time interval of
its path length for other nodes to execute in parallel. However,
the critical path provides the maximum capacity and hence,

enables the maximised total parallel workload (denoted as α =∑
θ∗i ∈Θ∗ αi). This provides the foundation to minimise the

interfering workload on the complete critical path.

Theorem 1. For a schedule S with CPFE and a schedule S ′
that prioritises a random complete path over the critical path,
the total parallel workload of providers in S is always equal
to or higher than that of S′, i.e., α ≥ α′.

Proof. The change from S to S ′ leads to two effects: 1) a
reduction on the length of the provider path, and 2) an increase
on length of one consumer path. Below we prove both effects
cannot increase the parallel workload after the change.

First, suppose the length of provider θ∗i is shortened by ∆
after the change from S to S ′, the same reduction applies
on its finish time, i.e., f ′(θ∗i) = f(θ∗i) −∆. Because nodes
in θ∗i are shortened, the finish time f(vj) of a consumer
node vj ∈ F (θ∗i) ∪ G(θ∗i) can also be reduced by a value
from ∆/m (i.e., a reduction on vj’s interference, if all the
shortened nodes in θ∗i belong to C(vj)) to ∆ (if all such nodes
belong to pre(vj)) [13], [12]. By definition 1, a consumer
vj ∈ F (θ∗i)∪G(θ∗i) can contribute to the αi if f(vj) ≤ f(θ∗i)
or f(vj) − Cj ≤ f(θ∗i). Therefore, αi cannot increase in S ′,
as the reduction on f(θ∗i) (i.e., ∆) is always equal or higher
than that of f(vj) (i.e., ∆/m or ∆).

Second, let L and L′ denote the length of the provider path
under S and S ′ (with L ≥ L′), respectively. The time for non-
critical nodes to execute in parallel with the provider path is
L′ on each of m − 1 cores under S ′. Thus, a consumer path
with its length increased from L′ to L directly leads to an
increase of (L − L′) in the interfering workload, as at most
L′ in the consumer can execute in parallel with the provider.

Therefore, both effects cannot increase the parallel workload
after the change from S to S ′, and hence, α ≥ α′.

Rule 1. ∀vj ∈ Θ∗,∀vk ∈ Θ⇒ pj > pk.

Theorem 1 leads to the first assignment rule that assigns
critical nodes with the highest priority, in which pj denotes
the priority of node vj . With Rule 1, the maximum parallel
capacity is guaranteed so that an immediate reduction (i.e., α)
on the interfering workload of λ∗ can be obtained. For the
example in Figure 1, Rule 1 leads to the execution scenarios
with a makespan of 16 and 13, and avoids the worst case. In
Section V, an analytical bound on αi for each provider θ∗i is
presented, with consumers nodes executed either randomly or
under an explicit schedule.

C. Exploiting parallelism and node dependency

With CPFE, the next objective is to maximise the par-
allelism of non-critical nodes and reduce the delay on the
completion of the critical path. Based on the CPC model,
each provider θ∗i is associated with F (θ∗i) and G(θ∗i). For
vj ∈ G(θ∗i), it can execute before F (θ∗i) and use the capacity
of θ∗i to execute, if assigned with a high priority. Under this
case, vj can 1) delay the finish of F (θ∗i) and the start of
θ∗i+1, and 2) waste the capacity of its own provider. A similar

observation is also obtained in [11], which avoids this delay
by the heuristic of early interference node first.

Rule 2. ∀θ∗i , θ∗l ∈ Θ∗ : i < l⇒ min
vj∈F (θ∗i)

pj > max
vk∈F (θ∗l)

pk.

Therefore, the second assignment rule is derived to specify
the priority between consumer groups of each provider. For
any two adjacent providers θ∗i and θ∗i+1, the priority of any
consumer in F (θ∗i) is higher than that of all consumers in
F (θ∗i+1). With Rule 2, the delay from G(θ∗i) on F (θ∗i) (and
hence θ∗i+1) can be minimised, because all nodes in G(θ∗i)
belong to consumers of following providers and are always
assigned with a lower priority than nodes in F (θ∗i). With Rules
1 and 2 applied to the DAG in Figure 1, , the delay from v6

on the critical path can be avoided, by assigning v6 with a
higher priority than that of {v2, v3, v4}.

We now schedule the consumer nodes in each F (θ∗i).
In [11], concurrent nodes with the same earliness (in terms of
the time they become ready during the execution of the critical
path) are ordered by the length of their longest complete path
(i.e., from vsrc to vsink). However, based on the CPC model,
a complete path can be divided into several local paths, each
of these local paths belong to the consumer group of different
providers. For local paths in F (θ∗i), the order of their lengths
can be the exact opposite to that of their complete paths.
Therefore, this approach can lead to a prolonged finish of
F (θ∗i).

In the constructed schedule, we guarantee a longer local
path is always assigned with a higher priority in a dependency-
aware manner. This derives the final assignment rule, as given
below. Notation lj(F (θ∗i)) denotes the length of the longest
local path in F (θ∗i) that includes vj . This length can be
computed by traversing anc(vj) ∪ des(vj) in F (θ∗i) [11].
For example, we have l2(F (θ∗2)) = 7 and l3(F (θ∗2)) =
l4(F (θ∗2)) = 3 for the DAG in Figure 1, so v2 is assigned
a higher priority than v3 and v4. With Rules 1-3 applied to
the example DAG, it finally leads to the best-case schedule
with a makespan of 13.

Rule 3?. vj , vk ∈ F (θ∗i) : lj(F (θ∗i)) > lk(F (θ∗i))⇒ pj > pk
However, simply applying Rule 3 to each F (θ∗i) is not

sufficient. Given a complex DAG structure, every F (θ∗i) can
form a smaller DAG G′, and hence, an inner nested CPC model
with the longest path in F (θ∗i) is the provider. Furthermore,
this procedure can be recursively applied to keep constructing
inner CPC models for each consumer group in a nested CPC
model, until all local paths in a consumer group are fully
independent. For each inner nested CPC model, Rules 1 and
2 should be applied for maximised capacity and minimised
delay of each consumer group, whereas Rule 3 is only applied
to independent paths in a consumer group for maximised
parallelism (and hence, the star mark on Rule 3). This enables
complete awareness of inter-node dependency and guarantees
the longest path first in each nested CPC model.

Algorithm 2 provides the complete approach of the rule-
based priority assignment. The method starts from the outer-
most CPC model (CPC(G, λ∗)), and assigns all provider

Algorithm 2: EA(Θ∗,Θ): Priority Assignment
Inputs : Θ∗,Θ
Parameters: p, pmax

Initialise : p = pmax, ∀vj ∈ Θ∗ ∪Θ, pj = −1
1 /* Assignment Rule 1. */

2 ∀vj ∈ Θ∗, pj = p; p = p− 1;
3 /* Assignment Rule 2. */

4 for each θ∗i ∈ Θ∗, in topological order do
5 while F (θ∗i) 6= ∅ do
6 /* Find the longest local path in F (θ∗i). */

7 ve, vj ∈ F (θ∗i) :
8 ve = argmax

ve
{le(F (θ∗i))|suc(ve) = ∅};

9 λve = ve ∪λvj , argmax
vj

{lj(F (θ∗i))|∀vj ∈ pre(ve)};

10 if |pre(vj)|> 1,∃vj ∈ λve then
11 {Θ∗′ ,Θ′} = CPC(F (θ∗i), λve);
12 EA(Θ∗

′
,Θ′);

13 break;
14 else
15 /* Assignment Rule 3. */

16 ∀vj ∈ λve , pj = p; p = p− 1;
17 F (θ∗i) = F (θ∗i) \ λve ;
18 end
19 end
20 end

nodes with the highest priority based on Rule 1 (Line 2). By
Rule 2, the algorithm starts from the earliest F (θ∗i) (Line 4)
and finds the longest local path λve in F (θ∗i) (Line 8-9). If
there exists dependency between nodes in λve and F (θ∗i)\λve
(Line 9), F (θ∗i) is further constructed as an inner CPC model
with the assignment algorithm applied recursively (Line 11-
12). This resolves the detected dependency by dividing λve
into a set of providers. Otherwise, λve is an independent local
path so that priority is assigned to its nodes based on Rule
3. The algorithm then continues with F (θ∗i)\λve . The process
continues until all nodes in V are assigned with a priority.

The time complexity of Algorithm 2 is quadratic. At most,
|V |+|E| calls to Algorithm 1 are invoked to construct the inner
CPC models (Line 11), which examines each node and edge
in the DAG. Mutually exclusively, Lines 16-17 assign each
node with a priority value. Given that the time complexity
of Algorithm 1 is O(|V |+|E|), we have the time complexity
O((|V |+|E|)2) for Algorithm 2. Although Algorithm 2 is
recursive, this result holds as a node assigned with a priority
will be removed from further iterations (Line 17), i.e., each
node (edge) is processed only once.

With the CPC model and the schedule, the complete process
for scheduling a DAG consists of three phases: i) transferring
the DAG to CPC; ii) statically assigning a priority to each
node by the rule-based priority assignment, and iii) executing
the DAG by a fixed-priority scheduler. With the input DAG
known a priori, phases i) and ii) can be performed offline so
that the scheduling cost at run-time is effectively reduced to
that of the traditional fixed-priority system.

V. (α, β)-PAIR RESPONSE TIME ANALYSIS

With the proposed schedule and CPC model, this section
presents a new response time analysis that explicitly accounts
for the parallel workload (i.e., α) and applies α as a safe
reduction on the interfering workload that can delay λ∗. In
addition, we highlight that although the proposed schedule as-
signs explicit node priority, the critical path first execution (i.e.,
CPFE) is a fundamental property to maximise parallelism (see
Theorem 1) and is adopted in many existing methods [15],
[11], [14]. For generality, the proposed analysis assumes CPFE
and allows any scheduling order for non-critical nodes. That
is, compared to the traditional analysis [12], [13], this analysis
provides an improved bound for all schedules based on CPFE.
The analysis does not assume the explicit execution order is
known in advance. In Section V-C, we extend the proposed
analysis for scheduling methods with an explicit order known
a priori (e.g., [17], [11] and the proposed schedule) with minor
modifications. Table II summarises the notations introduced in
the constructed analysis.

A. The (α, β)-pair analysis formulation

In the CPC model, the critical path of a DAG task is
transferred to a set of sequential providers Θ∗. A provider
θ∗i ∈ Θ∗ can start if and only if the previous provider θ∗i−1 and
its consumers F (θ∗i−1) have finished executions (Figure 2(b)).
In addition, F (θ∗i−1) can incur a delay from G(θ∗i−1) (i.e.,
early-released consumers that can execute concurrently with
F (θ∗i−1)), which in turn, delays the start of θ∗i (Figure 2(c)).

Based on Definitions 1 and 2, the parallel workload αi of
θ∗i finishes no later than f(θ∗i) on m − 1 cores. After θ∗i
completes, the interfering workload (if any) then executes on
all m cores, in which the latest-finished node in F (θ∗i) gives
the earliest starting time to the next provider (if it exists).
Therefore, bounding this delay requires:

1) a bound on the parallel workload (i.e., αi);
2) a bound on the longest execution sequence in F (θ∗i)

that executes later than f(θ∗i) (i.e., in the interfering
workload), denoted as βi.

With a random execution order, the worst-case finish time of
βi effectively upper bounds the worst-case finish of workload
in F (θ∗i) that executes later than f(θ∗i) [13], [12].

With αi and βi defined, Lemma 2 gives the bound on the
delay θ∗i that can incur due to the consumer nodes in F (θ∗i−1).

Lemma 2. For two consecutive providers θ∗i−1 and θ∗i ,
the consumers nodes in F (θ∗i−1) can delay θ∗i by at most⌈

1
m (Wi − Li − αi − βi) + βi

⌉
.

Proof. By Definition 2, the interfering workload in F (θ∗i) ∪
G(θ∗i) that can (directly or transitively) delay θ∗i+1 is at most
Wi−Li−αi. Given the longest execution sequence in F (θ∗i) in
the interfering workload (i.e., βi), the worst-case finish time of
F (θ∗i) (and also βi) is bounded as

⌈
1
m (Wi − Li − αi − βi)

⌉
+

βi, for a system with m cores. This is proved in [13], [12].
Note, as βi is accounted for explicitly, it is removed from the
interfering workload to avoid repetition.

Table II: Notations introduced in the proposed (α, β)-pair
response time analysis

Notation Description
βi The length of the longest path in F (θ∗i) that executes later

than f(θ∗i).
λve The set of nodes that forms the longest path in F (θ∗i) that

executes later than f(θ∗i), with the end node ve.
ΛV Returns all paths of the given input node set V .
| · | returns the size of a given input set.
I(vj) The non-critical nodes that can interfere vj .
Ie(·) The non-critical nodes that can interfere the input node or

path with an explicit execution order.
Iλve ,j The actual delay on λve from a node vj that executed in

the interfering workload.

Based on Lemma 2, the response time analysis for a DAG
task can be formulated in Equation 2. As Wi−Li−αi starts
strictly after f(θ∗i) (see Definition 1), the finish time of both
θ∗i and F (θ∗i) is bounded by the length of θ∗i (i.e., Li) and the
worst-case finish time of βi. In addition, θ∗i+1 can only start
after the finish of θ∗i and all nodes in F (θ∗i). Thus, the final
response time of the DAG is bounded by the sum of the finish
time of each provider and its consumers.

R =
∑
θ∗i ∈Θ∗

{
Li +

⌈
1

m
(Wi − Li − αi − βi)

⌉
+ βi

}
(2)

Compared to the traditional analysis [13], [12], this anal-
ysis can improve the worst-case response time approx-
imations, by tightening the interference on the critical
path (i.e., αi), without undermining the correctness of the
analysis (i.e., with βi). In the case of

⌈
1
m (W − L)

⌉
>∑

θ∗i ∈Θ

⌈
1
m (Wi − Li − αi − βi)

⌉
+ βi, a tighter bound can

be obtained. That is, the proposed analysis does not al-
ways dominate the traditional bound. Therefore, we take
min{R,L+

⌈
1
m (W − L)

⌉
} as the final analytical bound.

B. Bounding αi and βi
Notations αi and βi can be bounded by examining f(θ∗i)

and f(vk),∀vk ∈ F (θ∗i)∪G(θ∗i) in the scenario that one core
is dedicated to θ∗i and (m− 1) cores can be used by F (θ∗i).

For a node vj , it can subject to interference (say Ij) from
the concurrent nodes upon arrival. Before bounding f(vj), we
first distinguish two special situations in which the interference
of a node vj is zero, as given in Lemma 3, with C(vj) gives
vj’s concurrent nodes, ΛV denotes paths in a given node set
V and | · | returns the size of a given set.

Lemma 3. Under a schedule with CPFE, node vj does not
incur any interference from its concurrent nodes C(vj), if vj ∈
λ∗ ∨ |ΛC(vj)\λ∗ |< m− 1.

Proof. First, the interference of vj is zero if vj ∈ λ∗. This is
enforced by CPFE (i.e., Rule 1), where a critical node always
starts immediately after all nodes in pre(vj) have finished their
executions.

Second, a node vj ∈ V ¬ does not incur any interference if
|ΛC(vj)\λ∗ |< m−1. The concurrent nodes that can interfere vj
on (m−1) cores is C(vj)\λ∗. Given that the number of paths

in C(vj)\λ∗ is less than m−1, at least one core is idle when vj
is ready so that it can start directly with no interference.

Followed by Lemma 3, Equation 3 provides the bound
on f(vj), vj ∈ V . For a node vj , it cannot release until
all vk ∈ pre(vj) have completed. This is enforced by the
precedence constraints from the DAG structure, and hence
maxvk∈pre(vj){f(vk)}. In addition, if vj does not satisfy either
case in Lemma 3, vj can incur an worst-case interference of

1
m−1

∑
vk∈I(vj)

Ck, in which I(vj) denotes the non-critical
nodes that can interfere vj (see Equation 4) [11]. The condition
|ΛC(vj)\λ∗ |< m − 1 is checked by Line 8-9 in Algorithm 2
with m−1 searches, which identifies a path in the given node
set during each search.

f(vj) =Cj + max
vk∈pre(vj)

{
f(vk)

}
+{

0, if vj ∈ λ∗ ∨ |ΛC(vj)\λ∗ |< m− 1⌈
1

m−1 × (
∑
vk∈I(vj)

Ck)
⌉
, otherwise

(3)

Equation 3 bounds f(vj) by recursively computing the
finish time of all nodes in anc(vj). To guarantee each node
is taken into account only once when bounding the finish
time of vj , I(vj) only takes the concurrent non-critical nodes
that cannot delay anc(vj) [11], as given in Equation 4. Note
that this equation only applies to non-critical nodes vj with
|ΛC(vj)\λ∗ |≥ m− 1.

I(vj) = {vk|vk /∈ λ∗ ∧ vk /∈
⋃

vl∈anc(vj)

I(vl),∀vk ∈ C(vj)} (4)

With f(vj),∀vj ∈ V computed, the worst-case finish time
of a provider θ∗i and its F (θ∗i) can be obtained, as given in
Equations 5 and 6 respectively.

f(θ∗i) = max
∀vj∈θ∗i

{
f(vj)

}
(5)

f(F (θ∗i)) = max
∀vj∈F (θ∗

i
)

{
f(vj)

}
(6)

To this end, αi and βi can be effectively upper bounded
by examining the f(θ∗i) and f(vj), ∀vj ∈ F (θ∗i) ∪ G(θ∗i).
Equation 7 gives the bound on αi.

αi =
∑
vj∈Va

{
Cj

}
+
∑
vj∈Vb

{
f(θ∗i)−

(
f(vj)− Cj

)}
,

∀vj ∈ F (θ∗i) ∪G(θ∗i),

Va = {vj |f(vj) ≤ f(θ∗i)}
Vb = {vj |f(vj) > f(θ∗i) ∧ f(vj)− Cj < f(θ∗i)}

(7)

This equation is derived from Definition 1. For vj ∈ F (θ∗i)∪
G(θ∗i), it can contribute to αi if 1) it finishes before θ∗i , i.e.,
f(vj) ≤ f(θ∗i), or 2) it finishes after f(θ∗i) but with a start time
earlier than f(θ∗i), i.e., f(vj) > f(θ∗i)∧ f(vj)−Cj < f(θ∗i).
The former case gives Va in the equation, with nodes in Va
fully contributing to αi by Ca. The later case gives the set
Vb, in which nodes in Vb are partially contributing to αi by
f(θ∗i)− (f(vj)− Cj).

Then, βi can be decided by the longest path of F (θ∗i) that
executed later than f(θ∗i), i.e., in the interfering workload. Let
λve denote this path ending with node ve, Lemmas 4 and 5
identifies ve and its predecessor node in λve , among all nodes
in F (θ∗i).

Lemma 4. For the end node ve in the longest path of F (θ∗i),
f(ve) = f(F (θ∗i)).

Proof. Given two paths λa and λb with length La > Lb and a
total workload of W , it follows f(λa) = La+ 1

m (W −La) ≥
f(λb) = Lb + 1

m (W − Lb), as f(λa) − f(λb) = La − Lb +
1
m (Lb −La) ≥ 0. Therefore, node ve with f(ve) = f(F (θ∗i))
gives the end node of the longest path in the interfering
workload.

Lemma 5. The predecessor node of the end node
ve in the longest path of F (θ∗i) is given by
argmax

vj

{f(vj) | ∀vj ∈ pre(ve) ∩ F (θ∗i)}.

Proof. Given va, vb ∈ pre(vc) with f(va) ≥ f(vb), we have
len(λva∪vc) ≥ len(λvb∪vc) [11]. Therefore, the predecessor
node of ve with the latest finish is in the longest path ending
with ve in F (θ∗i).

Based on Lemmas 4 and 5, λve is computed recursively
by Equation 8. Starting from ve, λve searches through the
predecessor nodes recursively and includes the one with the
longest finish time in each recursion, until a complete path is
obtained or all predecessors are finished before f(θ∗i).

λve = λvj ∪ ve :

argmax
vj

{
f(vj)

∣∣∣∀vj ∈ pre(ve) ∧ f(vj) > f(θ∗i)
}

arg
ve

{
f(ve) = f(F (θ∗i))

}
, ve, vj ∈ F (θ∗i)

(8)

With λve obtained, βi is computed by Equation 9, which
bounds the workload in λve that is executed later than f(θ∗i).

βi =
∑

vj∈λve

{
Cj , iff(vj)− Cj ≥ f(θ∗i)

f(vj)− f(θ∗i), otherwise
(9)

For the first node in λve (say vs), two cases can occur based
on its worst-case start time f(vs)−Cs. First, with f(vs)−Cs ≥
f(θ∗i), vs starts after the finish of θ∗i and fully contributes to the
interfering workload. Otherwise (i.e., f(vs)−Cs < f(θ∗i)), vs
partially contributes to αi, i.e., vs ∈ Vb in Equation 7. Thus, by
Definitions 1 and 2, it can contribute at most (f(vs)− f(θ∗i))
to the interfering workload. Note that vs is the only node in
λve that can have f(vs)− Cs < f(θi).

With αi and βi computed for each provider θ∗i ∈ Θ∗, the
response time analysis for scheduling methods that feature
CPFE is complete.

Sustainability: It is worth noting that this analysis is sus-
tainable [20], i.e., provides a safe bound if any node executes
less than its WCET. We demonstrate this by reducing the
WCET of a randomly node in V ¬ and λ∗i respectively.

First, suppose vj ∈ F (θ∗i) ∪ G(θ∗i) executes less than its
WCET, denoted as C ′j < Cj . Based on Equation 3, it leads
to f ′(θ∗i) = f(θ∗i) as vj /∈ pre(vk),∀vk ∈ θ∗i , and f ′(vk) ≤
f(vk),∀vk ∈ F (θ∗i) ∪ G(θ∗i). Accordingly, by Definitions 1
and 2 we have α′i ≥ αi and β′i ≤ βi and hence, leads to a
non-increasing delay on the start of θ∗i+1 based on Equation 2.

Second, if a provider node vj ∈ θ∗i executes C ′j < Cj ,
we have f ′(θ∗i) < f(θ∗i) and f ′(vk) = f(vk),∀vk ∈
F (θ∗i) ∪ G(θ∗i) based on Equation 3. That is, the parallel
workload obtained by Equation 7 (with full WCET Cj) can
still finish before f(θ∗i) in the case of C ′j , and subsequently,
the interfering workload can start no later than f(θ∗i) on all
m cores. Thus, the finish time of θ∗i and F (θ∗i) cannot exceed
the bound obtained by Equation 2 with full WCET.

Combining both, a decrease in WCET of arbitrary nodes
in a DAG leads to a non-increasing bound on its completion.
Therefore, the proposed analysis provides a safe worst-case
bound as long as each node in the DAG does not exceed its
WCET, i.e., sustainable.

C. Supporting explicit execution order

With an explicit scheduling order for non-critical nodes, a
tighter bound can be obtained as each node can only incur
interference from concurrent nodes with a higher priority [11].
Using the proposed schedule as an example, this section
illustrates a novel analysis that can support CPFE and explicit
execution order for non-critical nodes.

With node priority, the interfering nodes of vj on m−1 cores
can be effectively reduced to 1) nodes in I(vj) that have a
higher priority than pj [11], and 2) m− 1 nodes in I(vj) that
have a lower priority and the highest WCET due to the non-
preemptive schedule [10]. Let Ie(vj) denote the nodes that
can interfere a non-critical node vj with an explicit order, it is
given as Equation 10, in which argmaxm−1

vk
returns the first

m−1 nodes with the highest value of the given metric (Ck in
this equation). The correctness of the equation is proven in [11]
and [10]. For simplicity, we take the (m−1) low priority nodes
as a safe upper bound. A finer ILP-based approach is available
in [10] to precisely compute this blocking. In addition, if
node-level preemption is allowed, Ie(vj) is further reduced
to {vk|pk > pj , vk ∈ I(vj)}.

Ie(vj) = {vk|pk > pj , vk ∈ I(vj)} ∪
m−1

argmax
vk

{Ck|pk < pj , vk ∈ I(vj)}
(10)

With this schedule, f(vj),∀vj ∈ V can be computed by Equa-
tion 3, with Ie(vj) applied to non-critical nodes executing on
m−1 cores. Hence, αi and βi can be bounded with the updated
f(θ∗i) and f(vj), ∀vj ∈ F (θ∗i)∪G(θ∗i), by Equation 7 and 9
respectively. Note that with an explicit schedule, λve computed
in Equation 8, it is not necessarily the longest path in F (θ∗i)
that executes in the interfering workload [11]. Instead, λve in
this case gives the path that will always finish last due to the
pre-planned node execution order.

The final bound on the response time of the DAG task is,
however, different from the generic case, i.e., Equation 2. With

node priority, it is not necessary that all workload in (Wi −
Li − αi − βi) can interfere with the execution of λve . Let
Re denote the response time of a DAG task with an explicit
scheduling order. It is bound in Equation 11, in which Ie(λve)
determines the nodes that can delay λve and Iλve ,j gives the
actual delay on λve from node vj in the interfering workload.

Re =
∑
θ∗i ∈Θ∗

Li+βi+

{
0, if |ΛIe(λve)|< m⌈

1
m ×

∑
vj∈Ie(λve) Iλve ,j

⌉
, otherwise

(11)
Given the length of θ∗i (Li) and the worst-case delay on

λve (Iλve) in the interfering workload, the worst-case finish
time of θ∗i and F (θ∗i) is upper bounded by Li + βi +⌈

1
m ×

∑
vj∈Ie(λve) Iλve ,j

⌉
. This is proved in Lemma 2. In

addition, if the number of paths in the nodes that can cause
Iλve is less than m (i.e., |ΛIe(λve)|< m), λve executes directly
after θ∗i and finishes by Li + βi. This is proved in Lemma 3.
Note that Iλve = 0 if βi = 0, as all workload in F (θ∗i)
contributes to αi so that θ∗i+1 (if it exists) can start immediately
after θ∗i .

The nodes that can interfere with λve (i.e., Ie(λve)) are
given by Equation 12, in which Iλve ,j gives the actual delay
from node vj on λve .

Ie(λve) =
⋃

vk∈λve

{vj |f(vj) > f(θ∗i) ∧ pj > pk, ∀vj ∈ I(vk)} ∪

⋃
vk∈λve

1..m
argmax

vk

{Iλve ,j |f(vj) > f(θ∗i) ∧ pj < pk, vj ∈ I(vk)}

(12)

Finally, Iλve ,j is bound by Equation 13, which takes the
workload of vj executed after f(θ∗i) (i.e., in the interfering
workload) as the worst-case delay on λve .

Iλve ,j =

{
Cj , if f(vj)− Cj ≥ f(θ∗i)

f(vj)− f(θ∗i), otherwise
(13)

This concludes the analysis for scheduling methods with
node execution order known a priori. As with the generic
bound, this analysis is sustainable, as a reduction in WCET
of any arbitrary node cannot lead to completion later than the
worst-case bound (see Section IV-A). Compared to the generic
bound for non-critical nodes with random order, this analysis
provides tighter results by removing the nodes that cannot
cause a delay due to their priority, in which Ie(vj) ⊆ I(vj)
and Ive ≤Wi − Li − αi − βi.

In addition, we note that the proposed analysis does not
strictly dominate the analysis in [11] for a particular schedule,
but can provide a more accurate result in the general case (see
results in Section VII-A). In practice, the bound in [11] can
be used as a safe upper bound for the proposed analysis, to
provide the most accurate known worst-case approximations.

VI. EXTENSION TO SUPPORT MULTIPLE DAGS

In this section, we extend the proposed scheduling and
analysing methods to allow the general sporadic task model
with n DAG tasks Γ = {τ1, ..., τn}, in which each task τx is
assigned a unique deadline monotonic priority Px.

With multiple DAG tasks, the schedule follows the principle
of highest priority task (Px) first and then within a task
highest priority node (pj) first, for all DAGs tasks and nodes
that are ready to release. With a fully non-preemptive DAG-
level scheduling, the highest priority task in the ready queue
is always scheduled to execute after the currently-executing
task is finished. That is, task priority is used to select the
next task to execute in the ready queue, whereas node priority
gives the exact execution order of nodes in the scheduled
DAG. We acknowledge this schedule is not work-conserving,
and can lead to certain cores being idle with ready tasks
await execution. This would lead to a longer worst-case
response time. However, it allows the currently executing task
to concentrate the available resources on nodes that form the
critical path.

A DAG task τx can be delayed by all jobs of high priority
tasks released during τx’s busy period and one job of the
low priority task that has the highest completion time. Let
R�x denote the worst-case response time of τx in the multi-
DAG case. R�x is given by Equation 14, in which Rx gives the
worst-case completion time of τx in the single-DAG case (by
Equation 2), lp(x) returns all tasks with a priority lower than
Px and hp(x) denotes τx’s higher priority tasks. As a ready
task is released after the currently-executing task is completed,
the worst-case delay from a job in an interfering task τy is
effectively bounded by Ry by Equation 2.

R�x = Rx + max
τy∈lp(x)

{
Ry

}
+

∑
τy∈hp(x)

⌈
R�x
Ty

⌉
Ry (14)

Finally, we note that by starting the next task in the ready
queue during the “fan-in” phase (in which the parallelism
of the DAG decreases monotonically until finished) of the
current task, a reduced overall makespan for all tasks can be
achieved while not affecting the current task. This is the same
principle as used in processors for in order pipeline execution
and proven analysis exists for bounding its execution [21].
This will not jeopardise the analysis as a release earlier than
expected cannot cause a node to finish later than the worst-case
bound. However, this complicates the scheduling and requires
an online analysis that identifies the fan-in phase of each DAG,
which may not always be feasible in real-world applications.
In addition, analysing this early release can further complicate
the (α, β)-pair analysis, due to extra offsets between the start
of the critical path and non-critical nodes of the task. Notably,
with [2], multi-DAGs with different periods can be described
as a single periodic DAG, so the proposed analysis can be
directly applied. However, this is out of the scope of this paper
and is postponed to future research.

VII. EVALUATIONS

The objectives of this evaluation are multifold: (1) to
demonstrate the scheduling and analysis (rta-cpf in Sec-
tion V-A and rta-cpf-eo in Section V-C) improves the worst-
case makespan (using the classic bound as reference); (2) to
establish the conditions in which the proposed methods lead

m=2 m=4 m=6 m=7 m=8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 classic
rta-cpf
He2019
rta-cpf-eo

Figure 3: DAG worst-case makespan using analytical methods
with varied number of cores (m).

to an improved makespan; (3) to demonstrate the proposed ex-
ecution order (EO) improves schedulability and the proposed
analysis tightens the worst-case bounds; and (4) to evaluate
the improvement through schedulability tests in multi-DAG
cases. The proposed node ordering, EO, is compared with He
et al. 2019 [11] (denoted as He2019 hereafter) in which a node
priority assignment is proposed alongside the analysis.

The experiment is evaluated through randomly generated
DAGs. Each DAG task is generated as follows: the generator
starts from a source node, and then generates nodes layer
by layer. The maximum depth (the number of layers) is
randomly chosen from 5 to 8. The number of generated nodes
in each layer is uniformly distributed from 2 to the parallelism
parameter, p. Open-ended nodes randomly add connections
with a probability of pc = 0.5 to join the other nodes in the
previous layer. Then, all terminal nodes are connected to a
sink node. The source and sink nodes serve the purpose of
organising the node graph, they both have a execution time of
one unit. Finally the execution times are randomly assigned
to nodes given a total workload of W 1.

A. Evaluation of the worst-case makespan

The experiment evaluated the performance scaled with the
number of cores (m). For each configuration (task and system
setting), 1,000 trials are applied on the compared methods.
Each trial generates one DAG task randomly. The normalised
worst-case makespan is used as the indicator.

Observation: Figure 3 presents the worst-case makespan of
the existing and the proposed methods with a varied number
of cores, on DAGs generated with p = 8. With m ≤ 4, the
rta-cpf provides similar results to the classic bound, i.e., most
of its results are upper bounded by the classic bound. This is
because with a small number of cores, the parallelism degree
of the DAG is limited so that each non-critical node has a
high worst-case finish time (see Equation 3). This leads to a
low αi bound (as well as a high βi bound) for each provider
and hence a longer worst-case makespan approximation. With
m further increased, rta-cpf becomes effective (starting from
m = 6) and outperforms the classic bound, e.g., by 15.7%
and 16.2% in average (and up to 31.7% and 32.2%), with
m = 7 and m = 8 respectively. In this case, more workload

1The evaluation implementation can be accessed at https://github.com/
automaticdai/research-dag-scheduling-analysis.

p=4 p=5 p=6 p=7 p=8

0.4

0.5

0.6

0.7

0.8

0.9

1.0 classic
rta-cpf
He2019
rta-cpf-eo

Figure 4: Sensitivity of parallelism parameter when m = 4.

L=0.6 L=0.7 L=0.8 L=0.9

0.7

0.8

0.9

1.0 classic
rta-cpf
He2019
rta-cpf-eo

Figure 5: Sensitivity of critical path ratio when m = 2, p = 8.

can execute in parallel with the critical path, i.e., an increase in
αi and a decrease in βi. Thus, rta-cpf leads to tighter results
by explicitly accounting for such workload, resulting in a safe
reduction in interference on the critical path.

Similar observations are also obtained in the comparison
of rta-cpf-eo and He2019, where rta-cpf-eo provides shorter
worst-case makespan approximations with m ≥ 4, e.g., by up
to 11.1% and 12.0% with m = 7 and m = 8 respectively.
We note that the node execution order in both methods can
also affect the analytical worst-case bounds. In Section VII-C,
we compare the scheduling and analysing methods separately.
Furthermore, we observe that with m = 7, rta-cpf (with
random execution order) provides similar results with He
2019, and outperforms He2019 with m = 8. This observation
further demonstrates the effectiveness of the proposed analysis.

B. Sensitivity of DAG properties on the evaluated methods

From the result in Section VII-A, it is not straightforward
to understand how DAG properties would impact on the
worst-case makespan. To accommodate this, this experiment
shows how the evaluated analysis is sensitive to certain DAG
characteristics. That is to say, by controlling the parameters of
the DAGs and evaluating the makespan in normalised values,
it can be seen by how much the performance of the analysis
changes. This would otherwise not be distinguishable through
worst-case makespan or schedulability analysis. Specifically,
we consider the following parameters in this experiment (with
the number of cores fixed): 1) DAG parallelism (the maximum
possible width when generating the randomised DAG), p; and
2) DAG critical path ratio to the total workload, %L, where
%L = L/W × 100%.

Observation: Figure 4 shows the worst-case makespan of
the proposed methods with varied values of the parallelism
parameter (with m = 4). First, given a fixed number of cores,
rta-cpf outperforms the classic bound in general. However,
with the increase of p, the difference in performance of

both methods becomes less significant. The intuition behind
this observation is, with an increased number of concurrent
nodes, the interference set of each node also increases (see
Equation 4), which then results in an increased worst-case
finish time. This undermines the effectiveness of rta-cpf, which
accounts for αi and βi based on worst-case finish time.

However, rta-cpf-eo demonstrates a strong performance and
its effectiveness is not affected by the change on p, which
consistently outperforms other methods in all system settings.
This is because with an explicit execution order, the increase
of concurrent nodes cannot impose a significant effect to the
finish time of nodes, in which high priority nodes can execute
immediately without any delay (see Equation 12). Therefore,
rta-cpf-eo with parallelism DAGs can still account for the
actual interfering workload effectively, and provide the lowest
worst-case makespan.

Observations: Figure 5 evaluates the impact of the length
of the critical path on the effectiveness of the proposed
methods, with m = 2. The critical path is varied in a range
from 60% to 90% of total workload of generated DAGs. In
this experiment, the proposed analysis demonstrates the most
pronounced performance compared to the existing methods.

For the proposed methods, the worst-case makespan of rta-
cpf varies with a small number of %L, due to the varied inter-
nal structure of the generated DAGs (e.g., L = 0.6). However,
with a further increase of both %L, rta-cpf provides a constant
makespan, as all non-critical workload can execute in parallel
with the critical path. In this case, the makespan directly equals
the length of the critical path. Similar observations are also
obtained for rta-cpf-eo, which provides a constant makespan
(i.e., the length of critical path) under all experimental settings.
Note, with further increases of %L, He2019 is completely
dominated by rta-cpf (based on evaluations but not presented
due to page limitation).

Summary: Based on the above experiments, the proposed
methods outperform the classic method and the state-of-the-art
in a general case. In addition, we observed that all the tested
parameters m, p, %L have an impact on the performance of
the proposed methods. For rta-cpf, it is sensitive to the relation
between m, p, in which a low m or a high p undermines the
effectiveness of the method. Both factors have a direct impact
to the finish time of all non-critical nodes. In addition, %L
can also significantly affects the performance of rta-cpf, in
which a long critical path generally leads to more accurate
makespan approximations. In a similar fashion to rta-cpf, rta-
cpf-eo demonstrates better performance with the increase of
%L. However, due to its explicit execution order, rta-cpf-eo
demonstrates much stronger performance than rta-cpf and is
not affected with an impact from parameter p.

C. Effectiveness of the proposed schedule and analysis

In this experiment, the proposed priority assignment is
compared against the state-of-the-art node-level priority as-
signment method, i.e., He2019. In addition, we demonstrate
the worst-case makespan with the priority assignment consid-
ered. The purpose is to demonstrate the improved worst-case

m=2 m=3 m=4 m=5 m=6 m=7 m=8
0

200

400

600

800

Fr
eq

ue
nc

y

EO He2019
EO He2019

Figure 6: Proposed priority ordering v.s. the ordering in
He 2019, grouped by the number of cores (m). p = 8. “�”
means outperform and “≺” means the vice versa.

scenario achieved by the priority assignment. Overall there are
1000 random tasksets generated under each configuration. Two
metrics are compared in this evaluation: (a) the percentage of
times that the proposed rta-cpf-eo analysis is better than the
compared method, and (b) the reduction in the normalised
makespan within the improved cases.

Observation: Figure 6 reports the comparison of the pro-
posed ordering method and the method in He2019, with a
varied number of cores. The term “frequency” indicates the
number of cases that the proposed schedule has a shorter (in
red) or longer (in blue) makespan than He2019. For fairness,
the proposed worst-case makespan analysis for explicit order
(Section V-C) is applied for both ordering, so the differences
in performance all comes from the ordering policies.

From the results, the proposed method outperforms He2019
with a higher frequency in general, especially with a small
number of cores, e.g., around the frequency of 600 with m = 2
and m = 3. With the increase of m, the difference in frequency
of the methods gradually decreases, and becomes difficult to
distinguish with m = 7, 8. In these cases, most nodes can
execute in parallel so that different execution orders become
less significant to affect the final makespan.

Table III presents detailed comparison of both methods
in their advantage cases, in terms of the percentage of
improvements. For EO � He2019 (i.e., proposed schedule
outperforms He2019), we observe an average improvement
(in terms of worst-case makespan) higher than 5.4% (up to
7.89%) in all cases. For cases with EO ≺ He2019 (i.e., He2019
performs better), the improvement is consistently lower than
the corresponding case with EO � He2019.

Table IV reports the number of advantage cases and the
scientific significance of the improvements, in both EO �
He2019 and EO ≺ He2019. The magnitude in Table IV is
a categorical value in (negligible effect, small effect, medium
effect and large effect) to reflect the scientific significance [22].
In other words, the scientific significance informs whether any
difference is more than random chance and the size of the
difference. The column # of data illustrates the number of
times one approach has a lower makespan than the other. In
all cases our approach outperforms the state of the art, He2019.
The Magnitude gives further evidence of the benefits of our

Table III: Percentage of improvement in advantage cases w.r.t. node ordering policy

EO � He2019 EO ≺ He2019

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=2 m=3 m=4 m=5 m=6 m=7 m=8
avg. 7.89 8.05 7.21 6.77 6.18 5.72 5.41 6.47 5.92 4.53 3.24 2.52 1.64 1.65
max. 30.63 36.18 33.39 34.17 30.65 27.75 25.27 30.68 27.19 23.83 21.59 24.09 16.76 19.26
min. 0.05 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.04 0.02 0.03 0.03 0.02 0.03

Table IV: Advantage cases numbers and scientific significance
in node-level priority assignment – EO and He2019 ordering
both implemented in (α, β) analysis.

m Dataset # of data Magnitude

2 EO � He2019 668 medium
He2019 � EO 261 medium

4 EO � He2019 450 medium
He2019 � EO 276 small

6 EO � He2019 298 small
He2019 � EO 255 negligible

8 EO � He2019 192 small
He2019 � EO 184 negligible

approach, e.g. m = 4 the effect size when EO outperforms
He2019 is medium versus small for He2019 outperforming
EO, and for m = 8 it is small versus negligible even though
of data have similar values.

Similarly, we have done a comparison of our analysis and
the analysis in He2019 by applying the same ordering on both
methods and found consistent results (not presented due to
page limitation). Therefore, we conclude that the proposed
scheduling and analysing are effective, and outperform the
state-of-art techniques in the general case.

D. Schedulability test with multi-DAGs

To further evaluate priority assignment, we tested the
schedulability of random generated multi-DAG tasksets. The
experiment is setup as follows: the number of cores is fixed
to m = 6. The total utilisation of all DAG tasks (averaged on
per core) ranges from 0.1 to 1.0, with a step size of 0.05. The
utilisation of a DAG task within a taskset is generated through
the UUniFast-discard algorithm [23]. The utilisation of each
DAG should be less than m, otherwise it is discarded.

A taskset has 10 DAG tasks, and each DAG is generated
randomly in the same way as introduced earlier. The periods
of DAG tasks are randomly generated for Ti ∈ (1000, 2000),
and deadlines are equal to periods. The execution times of
the nodes within a DAG task are then generated based on
its workload Wi = Ui/Ti. Schedulability for multi-DAGs is
tested using Equation 14, in which Ri is calculated using
rta-cpf-eo analysis and He2019 analysis, respectively. The
schedulability of random execution, i.e., without node-level
orders is evaluated by the classic response time equation.
The priorities are assigned to DAGs based on the deadline-
monotonic policy.

Observation: As given in Figure 7, the method random
gives a reference bound with nodes in each DAG scheduled

Table V: Schedulable tasksets (%) to the target utilisation∑
U/m (averaged on per core)∑

U 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Random 100 99.9 87.4 9.0 0.4 0.3 0.2
EO 100 99.9 99.6 80.0 13.0 0.7 0.2
He2019 100 99.9 95.2 26.7 0.7 0.3 0.2

0.20 0.25 0.30 0.35 0.40 0.45 0.50
U/m

0

20

40

60

80

100

Sc
he

du
la

bl
e

Ta
sk

se
ts

 (%
) random

EO
He2019

Figure 7: Schedulability v.s. target averaged total utilisation
per core for multi-DAGs (when m = 6, p = 8).

randomly. From the results, the proposed scheduling and
analysing methods provides better system schedulability than
that of the state-of-the-art in most cases (i.e., for

∑
U/m =

0.30 − 0.45). The results are consistent with the single DAG
case as DAG tasks are executed in a non work-conserving
manner (i.e., one task at a time), in the priority order. Table V
reports the detailed schedulability results. From this table, the
proposed methods outperform the state-of-the-art up to 53.3%
when

∑
U/m = 0.35.

Summary: In these experiments, we have shown that the
proposed worst-case makespan analysis and the priority as-
signment can generally improve the schedulability by tighten-
ing the worst-case bound. The effectiveness of the method is
also shown by the improved number of schedulable tasks with
multi-DAGs compared with the existing approaches.

VIII. CONCLUDING REMARKS

In this paper, a rule-based scheduling method is proposed
which maximises node parallelism to improve the schedu-
lability of single DAG tasks. Based on the rules, response
time analysis is developed that provides tighter bounds than
existing analysis for 1) any scheduling method that prioritises
the critical path, and 2) scheduling methods with explicit exe-
cution order known a priori. We demonstrate that the proposed
scheduling and analysing methods outperform existing tech-
niques. In future work, we will focus on further optimisations
of the proposed method and extensions to fully support work-
conserving schedules for multiple recurrent DAGs.

REFERENCES

[1] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in Real-Time Systems Symposium, 2012, pp. 63–72.

[2] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate DAGs from multi-rate task sets,” in Real-Time
and Embedded Technology and Applications Symposium, 2020, pp. 226–
238.

[3] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in International Conference on Embedded and Real-Time Computing
Systems and Applications, 2016, pp. 159–169.

[4] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “Rosch: real-
time scheduling framework for ROS,” in International Conference on
Embedded and Real-Time Computing Systems and Applications, 2018,
pp. 52–58.

[5] Y. Suzuki, T. Azumi, N. Nobuhiko, and S. Kato, “HLBS: Heterogeneous
laxity-based scheduling algorithm for DAG-based real-time computing,”
in International Conference on Cyber-Physical Systems, Networks, and
Applications, 2016, pp. 83–88.

[6] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in Real-
Time and Embedded Technology and Applications Symposium, 2010, pp.
301–310.

[7] S. E. Saidi, N. Pernet, and Y. Sorel, “Automatic parallelization of multi-
rate fmi-based co-simulation on multi-core,” in Symposium on Theory
of Modeling and Simulation , 2017, p. Article No. 5.

[8] A. Vincentelli, P. Giusto, C. Pinello, W. Zheng, and M. Natale, “Op-
timizing end-to-end latencies by adaptation of the activation events in
distributed automotive systems,” in Real Time and Embedded Technology
and Applications Symposium, 2007, pp. 293–302.

[9] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation
of jitter control methods,” in Conference on Real-Time and Network
Systems, 2007, pp. 163–172.

[10] M. A. Serrano, A. Melani, M. Bertogna, and E. Quiñones, “Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions,” in Design, Automation & Test in Europe Conference &
Exhibition, 2016, pp. 1066–1071.

[11] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment in
real-time scheduling of DAG tasks on multi-cores,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295,
2019.

[12] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks
in multiprocessor systems,” in Euromicro Conference on Real-Time
Systems, 2015, pp. 211–221.

[13] R. L. Graham, “Bounds on multiprocessing timing anomalies,” Journal
on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[14] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in International
Conference on Real-Time Networks and Systems, 2017, pp. 28–37.

[15] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,” Journal of
Systems Architecture, vol. 105, p. 101704, 2020.

[16] F. Guan, J. Qiao, and Y. Han, “DAG-fluid: A real-time scheduling
algorithm for DAGs,” IEEE Transactions on Computers, no. 01, pp.
1–1, 2020.

[17] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan, “Timing-anomaly free
dynamic scheduling of conditional DAG tasks on multi-core systems,”
ACM Transactions on Embedded Computing Systems, vol. 18, no. 5, pp.
1–19, 2019.

[18] H. Lin, M.-F. Li, C.-F. Jia, J.-N. Liu, and H. An, “Degree-of-node task
scheduling of fine-grained parallel programs on heterogeneous systems,”
Journal of Computer Science and Technology, vol. 34, no. 5, pp. 1096–
1108, 2019.

[19] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[20] A. Burns and S. K. Baruah, “Sustainability in real-time scheduling.”
Journal of Computing Science and Engineering, vol. 2, no. 1, pp. 74–
97, 2008.

[21] J. Engblom and B. Jonsson, “Processor pipelines and their properties
for static WCET analysis,” in International Workshop on Embedded
Software. Springer, 2002, pp. 334–348.

[22] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[23] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2010, pp. 6–
11.

